How do you express sin^2 theta - sec^2 thetacottheta + tan^2 theta in terms of cos theta ?

1 Answer
Jun 30, 2018

(1-cos^4(theta))/cos^2(theta)-1/(cos(theta)sin(theta)) where

sin(theta)=pmsqrt(1-cos^2(theta))

Explanation:

Using

sin^2(theta)=1-cos^2(theta)
and
sec^2(theta)=1/cos^2(theta)
cot(theta)=cos(theta)/sin(theta)=cos(theta)/(pmsqrt(1-cos^2(theta))

tan^2(theta)=sin^2(theta)/cos^2(theta)=(1-cos^2(theta))/cos^2(theta)
putting Things together

1-cos^2(theta)+(1-cos^2(theta))/cos^2(theta)-1/(sin(theta)cos(theta))

this is equal to

((1-cos^2(theta))(1+cos^2(theta)))/cos^2(theta)-1/(cos(theta)*sin(theta))
using that

a^2-b^2=(a-b)(a+b)

we get

(1-cos^4(theta))/cos^2(theta)-1/(cos(theta)sin(theta))

where

sin(theta)=pmsqrt(1-cos^2(theta))