How do you express sin^2 theta - cottheta + tan^2 theta in terms of cos theta ?

1 Answer
Mar 10, 2016

(1/cos^2theta)-cos^2theta-(costheta/sqrt(1-cos^2theta))

Explanation:

sin^2theta-cottheta+tan^2theta can be written as

(1-cos^2theta)-(costheta/sintheta)+(sec^2theta-1)

= (1-cos^2theta)-(costheta/sqrt(1-cos^2theta))+((1/cos^2theta)-1)

= (1/cos^2theta)-cos^2theta-(costheta/sqrt(1-cos^2theta))