How do you express cosθcos2θ+cot2θ in terms of sinθ?

1 Answer
Jan 15, 2016

2sin4θ4sin2θ+sinθsin2θ+22sin2θ

Explanation:

Write in terms of sinθ and cosθ.

=cosθcos2θ+cos2θsin2θ

Find a common denominator.

=cosθsin2θsin2θcos2θsin2θsin2θ+cos2θsin2θ

Combine.

=cosθsin2θcos2θsin2θ+cos2θsin2θ

The following simplification may seem unecessary, but is actually relevant. Its purpose will become clear in the following step.

=sinθ(cosθsinθ)cos2θsin2θ+cos2θsin2θ

Use the following identities:

  • cos2θ=1sin2θ
  • 2cosθsinθ=sin2θcosθsinθ=sin2θ2

=sinθ(sin2θ2)(1sin2θ)sin2θ+(1sin2θ)sin2θ

=sinθsin2θ2sin2θ+sin4θ+1sin2θsin2θ

=sinθsin2θ22sin2θ+sin4θ+1sin2θ

=2sin4θ4sin2θ+sinθsin2θ+22sin2θ