How do you express cosθ−cos2θ+cot2θ in terms of sinθ?
1 Answer
Jan 15, 2016
Explanation:
Write in terms of
=cosθ−cos2θ+cos2θsin2θ
Find a common denominator.
=cosθsin2θsin2θ−cos2θsin2θsin2θ+cos2θsin2θ
Combine.
=cosθsin2θ−cos2θsin2θ+cos2θsin2θ
The following simplification may seem unecessary, but is actually relevant. Its purpose will become clear in the following step.
=sinθ(cosθsinθ)−cos2θsin2θ+cos2θsin2θ
Use the following identities:
cos2θ=1−sin2θ 2cosθsinθ=sin2θ⇒cosθsinθ=sin2θ2
=sinθ(sin2θ2)−(1−sin2θ)sin2θ+(1−sin2θ)sin2θ
=sinθsin2θ2−sin2θ+sin4θ+1−sin2θsin2θ
=sinθsin2θ2−2sin2θ+sin4θ+1sin2θ
=2sin4θ−4sin2θ+sinθsin2θ+22sin2θ