We shall use the following identities:
sectheta= 1/costheta
cottheta= costheta/sintheta
Also, cos^2theta+sin^2theta=1
=>cos^2theta=1-sin^2theta color(red)rarr costheta=+-sqrt(1-sin^2theta)
The + or - depends on the quadrant in which the angle theta
is found.
Assuming theta acute we can simply ignore this.
Hence,
costheta= sqrt(1-sin^2theta)
=>1/costheta=1/(sqrt(1-sin^2theta))
costheta/sintheta=sqrt(1-sin^2theta)/sintheta
=>4costheta-sectheta+2cottheta color(red)rarr 4*(sqrt(1-sin^2theta))-(1/(sqrt(1-sin^2theta)))+2*(sqrt(1-sin^2theta)/sintheta)
color(red)rarr [4(1-sin^2theta)sintheta-sintheta+2(1-sin^2theta)]/(sinthetasqrt(1-sin^2theta))