How do you express 4 cos theta - sec theta + 2 cot theta in terms of sin theta ?

1 Answer
Mar 18, 2016

[4(1-sin^2theta)sintheta-sintheta+2(1-sin^2theta)]/(sinthetasqrt(1-sin^2theta))

Explanation:

We shall use the following identities:

sectheta= 1/costheta

cottheta= costheta/sintheta

Also, cos^2theta+sin^2theta=1

=>cos^2theta=1-sin^2theta color(red)rarr costheta=+-sqrt(1-sin^2theta)

The + or - depends on the quadrant in which the angle theta
is found.

Assuming theta acute we can simply ignore this.

Hence,
costheta= sqrt(1-sin^2theta)

=>1/costheta=1/(sqrt(1-sin^2theta))

costheta/sintheta=sqrt(1-sin^2theta)/sintheta

=>4costheta-sectheta+2cottheta color(red)rarr 4*(sqrt(1-sin^2theta))-(1/(sqrt(1-sin^2theta)))+2*(sqrt(1-sin^2theta)/sintheta)

color(red)rarr [4(1-sin^2theta)sintheta-sintheta+2(1-sin^2theta)]/(sinthetasqrt(1-sin^2theta))