How do you express 2costheta + 2cos(theta + pi/3) in the form Rcos(theta + alpha), where R>0 and 0< alpha <pi/2?

1 Answer
May 20, 2018

R=2sqrt3 and alpha=pi/6 in (0,pi/2).

Explanation:

Let, f(theta)=2costheta+2cos(theta+pi/3).

Using cosx+cosy=2cos((x+y)/2)cos((x-y)/2), we have,

f(theta)=2{2cos((theta+(theta+pi/3))/2)cos((theta-(theta+pi/3))/2)},

=4cos(theta+pi/6)cos(-pi/6),

=4cos(theta+pi/6)*(sqrt3/2).

rArr f(theta)=2sqrt3cos(theta+pi/6).

So, we have, f(theta)=Rcos(theta+alpha); R gt 0, theta in (0,pi/2), where,

R=2sqrt3 and alpha=pi/6 in (0,pi/2).