How do you expand #(3x+2y)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sankarankalyanam Jan 28, 2018 #color(green)(81x^4 + 216x^3y + 216 x^2y^2 + 96xy^3 + 16y^4)# Explanation: As per Pascal's Triangle coefficients will be 1 4 6 4 1 #(3x + 2y)^4 = 1 * (3x)^4 (2y)^0 + 4 (3x)^3 (2y) + 6 (3y)^2 (2y)^2 + 4 (3x) (2y)^3 + 1 (3x)^0 (2y)^4# #color(green)(81x^4 + 216x^3y + 216 x^2y^2 + 96xy^3 + 16y^4)# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 12686 views around the world You can reuse this answer Creative Commons License