How do you evaluate the six trigonometric functions given t=π/6? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer sankarankalyanam Oct 30, 2017 Given t = pi/6 = 30^0 Sin 30 = 1/2 cos 30 = sqrt3/2 tan 30 = 1/sqrt3 csc. 30 = 2/ sin 30 = 2 sec 30 = 1/ cos 30 = 2/sqrt3 cot 30 = 1/ tan 30 = sqrt3 Explanation: Given t = pi/6 = 30^0 Sin 30 = 1/2 cos 30 = sqrt3/2 tan 30 = 1/sqrt3 csc. 30 = 2/ sin 30 = 2 sec 30 = 1/ cos 30 = 2/sqrt3 cot 30 = 1/ tan 30 = sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2915 views around the world You can reuse this answer Creative Commons License