How do you evaluate the six trigonometric functions given t=π/6? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer sankarankalyanam Oct 30, 2017 Given #t = pi/6 = 30^0# #Sin 30 = 1/2# #cos 30 = sqrt3/2# #tan 30 = 1/sqrt3# #csc. 30 = 2/ sin 30 = 2# #sec 30 = 1/ cos 30 = 2/sqrt3# # cot 30 = 1/ tan 30 = sqrt3# Explanation: Given #t = pi/6 = 30^0# #Sin 30 = 1/2# #cos 30 = sqrt3/2# #tan 30 = 1/sqrt3# #csc. 30 = 2/ sin 30 = 2# #sec 30 = 1/ cos 30 = 2/sqrt3# # cot 30 = 1/ tan 30 = sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2618 views around the world You can reuse this answer Creative Commons License