How do you evaluate the sine, cosine, and tangent of the angle #(11pi)/4# without using a calculator? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Jun 30, 2015 Find 6 trig functions of #x = (11pi)/4# Explanation: #sin ((11pi)/4) = sin ((3pi)/4 + 2pi) = sin ((3pi)/4) = (sqrt2)/2# #cos ((11pi)/4) = cos ((3pi)/4) = - (sqrt2)/2# #tan ((11pi)/4) = - 1# #cot ((11pi)/4) = - 1# #sec ((11pi)/4) = - sqrt2# #csc ((11pi)/4) = sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 4671 views around the world You can reuse this answer Creative Commons License