How do you evaluate the integral of #x*(cos(x^2))^5#?
1 Answer
Explanation:
First, let
#u=x^2" "=>" "du=2xdx#
So, we have
#intxcos^5(x^2)dx#
Rearrange the
#=1/2intunderbrace(cos^5(x^2))_(cos^5(u))*underbrace(2xdx)_(du)#
Substituting, this equals
#=1/2intcos^5(u)du#
Before we integrate this, we want to modify this so that we can have a
#cos^5(u)=cos(u)cos^4(u)=cos(u)(cos^2(u))^2=cos(u)(1-sin^2(u))^2#
Giving us the integral
#=1/2intcos(u)(1-sin^2(u))^2du#
Now, we can substitute again:
#v=sin(u)" "=>" "dv=cos(u)du#
Rearrange the integral:
#=1/2intunderbrace((1-sin^2(u))^2) _ ((1-v^2)^2) * underbrace(cos(u)du) _ (dv)#
Which equals:
#=1/2int(1-v^2)^2dv#
Distribute
#=1/2int(1-2v^2+v^4)dv#
Splitting up the integral, we obtain:
#=1/2intv^4dv-2(1/2)intv^2dv+1/2int1dv#
Using the rule:
#intv^ndv=v^(n+1)/(n+1)+C#
Yields, after integrating term by term:
#=1/2(v^5/5)-v^3/3+1/2(v)+C#
#=v^5/10-v^3/3+v/2+C#
Using
#=sin^5(u)/10-sin^3(u)/3+sin(u)/2+C#
Now using
#=sin^5(x^2)/10-sin^3(x^2)/3+sin(x^2)/2+C#