How do you evaluate the integral #int dx/(3x(x-4))#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Ratnaker Mehta Mar 15, 2018 # 1/12ln|(x-4)/x|+C, or, 1/12ln|(1-4/x)|+C.# Explanation: Let, #I=intdx/{3x(x-4)}=1/3int1/{x(x-4)}dx#. #:. I=1/3*1/4int4/{x(x-4)}dx#, #=1/12int{x-(x-4)}/{x(x-4)}dx#, #=1/12int[x/{x(x-4)}-(x-4)/{x(x-4)}]dx#, #=1/12int[1/(x-4)-1/x]dx#, #=1/12[ln|(x-4)|-ln|x|]#. # rArr I=1/12ln|(x-4)/x|+C, or, 1/12ln|(1-4/x)|+C.# OTHERWISE, If we use the formula #int1/(x^2-a^2)dx=1/(2a)ln|(x-a)/(x+a)|+c#, then, #I=1/3int1/(x^2-4x)dx=1/3int1/{(x-2)^2-2^2}dx#, #=1/3*1/(2*2)ln|{(x-2)-2}/{(x-2)+2}|#, #=1/12ln|(x-4)/x|+C#, as before! Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 2169 views around the world You can reuse this answer Creative Commons License