How do you evaluate the integral int arctanx/x^2?
1 Answer
Jun 20, 2017
Explanation:
I=intarctanx/x^2dx
Use integration by parts. Let:
u=arctanx" "=>" "du=1/(x^2+1)dx
dv=1/x^2dx" "=>" "v=-1/x
Then:
I=uv-intvdu
I=-arctanx/x+intdx/(x(x^2+1))
Performing partial fractions:
1/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)
1=A(x^2+1)+(Bx+C)x
1=x^2(A+B)+x(C)+A
Comparing coefficients,
{(A+B=0),(C=0),(A=1):}
So
1/(x(x^2+1))=1/x+(-x)/(x^2+1)
So:
I=-arctanx/x+intdx/x-intx/(x^2+1)dx
I=-arctanx/x+lnabsx-1/2int(2x)/(x^2+1)dx
I=-arctanx/x+lnabsx-1/2lnabs(x^2+1)+C