How do you evaluate the integral int arctanx/x^2?

1 Answer
Jun 20, 2017

-arctanx/x+lnabsx-1/2lnabs(x^2+1)+C

Explanation:

I=intarctanx/x^2dx

Use integration by parts. Let:

u=arctanx" "=>" "du=1/(x^2+1)dx

dv=1/x^2dx" "=>" "v=-1/x

Then:

I=uv-intvdu

I=-arctanx/x+intdx/(x(x^2+1))

Performing partial fractions:

1/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)

1=A(x^2+1)+(Bx+C)x

1=x^2(A+B)+x(C)+A

Comparing coefficients,

{(A+B=0),(C=0),(A=1):}

So B=-1 as well, giving the decomposition:

1/(x(x^2+1))=1/x+(-x)/(x^2+1)

So:

I=-arctanx/x+intdx/x-intx/(x^2+1)dx

I=-arctanx/x+lnabsx-1/2int(2x)/(x^2+1)dx

I=-arctanx/x+lnabsx-1/2lnabs(x^2+1)+C