How do you evaluate the integral #int (2x^2+x-5)/((x-3)(x+2))#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Feb 19, 2018 #int (2x^2+x-5)/(x^2-x-6)*dx=2x+2ln(x-3)-ln(x+2)+C# Explanation: #int (2x^2+x-5)/(x^2-x-6)*dx# =#int 2dx#+#int (x+7)/(x^2-x-6)*dx# =#2x+int (x+7)/((x-3)*(x+2))*dx# =#2x+int (2x+4)/((x-3)(x+2))*dx#-#int (x-3)/((x-3)(x+2))*dx# =#2x+int (2dx)/(x-3)#-#int (dx)/(x+2)# =#2x+2ln(x-3)-ln(x+2)+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1231 views around the world You can reuse this answer Creative Commons License