How do you evaluate the definite integral #int(-x-1)dx# from #[-3,2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Ratnaker Mehta Aug 17, 2016 #-5/2, or, -2.5#. Explanation: Let #I=int_-3^2 (-x-1)dx#. #:. I=-int_-3^2 (x+1)dx# #=-[x^2/2+x]_-3^2# #=-(2^2/2+2)+{(-3)^2/2+(-3)}# #=-2-2+9/2-3# #=-5/2, or, -2.5#. Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1139 views around the world You can reuse this answer Creative Commons License