How do you evaluate the definite integral #int cosxe^sinx# from #[0, pi/2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer sjc Oct 18, 2016 #e-1# Explanation: #int_o^(pi/2)cosxe^sinxdx# recognising that # d/(dx)(e^sinx)=cosxe^sinx # we have #int_o^(pi/2)cosxe^sinxdx=[e^sinx]_0^(pi/2)# #=e^sin(pi/2)-e^sin0# #=e^1-e^0# #=e-1# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 2569 views around the world You can reuse this answer Creative Commons License