How do you evaluate the definite integral #int 5/(1+x^2)+(2x)/3dx# from #[0,1]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Ratnaker Mehta Aug 11, 2016 #1/12(15pi+4)#. Explanation: #int_0^1{5/(1+x^2)+2x/3}dx# #=5int_0^1 1/(1+x^2)dx+2/3int_0^1xdx# #=5[tan^-1x]_0^1+2/3[x^2/2]_0^1# #=5[tan^-1 1-tan^-1 0]+1/3[1-0]# #=5[pi/4-0]+1/3[1-0]# #=5pi/4+1/3# #=1/12(15pi+4)#. Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1248 views around the world You can reuse this answer Creative Commons License