How do you evaluate the definite integral #int (2x-3) dx# from #[1,3]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer marfre Mar 12, 2018 #2# Explanation: Given: #int(2x-3)dx# from #[1,3]# #int_1^3(2x-3)dx =int_1^3(2x)dx - int_1^3 3 dx # Use: #int(kx^n)dx = k*1/(n+1)x^(n+1) + C# #int_1^3(2x)dx - int_1^3 3 dx = 2*1/2 x^2 - 3x |_1^3# # = x^2 - 3x |_1^3 = (3^2 - 3*3) - (1^2 - 3*1)# #= (9-9) - (1-3) = 0 -(-2)# #= 2# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 18396 views around the world You can reuse this answer Creative Commons License