How do you evaluate the definite integral #int (1+y^2)/y dy# from #[1,2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer sjc Dec 5, 2016 #ln2+3/2# Explanation: #int_1^2(1+y^2)/ydy# #=int_1^2(1/y+y^2/y)dy=int_1^2(1/y+y)dy# #=[lny+y^2/2]_1^2# #=[lny+y^2/2]^2-[lny+y^2/2]_1# #=[ln2+2^2/2]-[cancel(ln1)^0+1^2/2]# #=ln2+2-1/2# #=ln2+3/2# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 5738 views around the world You can reuse this answer Creative Commons License