Recalling that #tanx=sinx/cosx,#
#tan(arcsin(1/3))=sin(arcsin(1/3))/cos(arcsin(1/3))#
#sin(arcsin(1/3))=1/3# from the fact that #sin(arcsinx)=x#, but for the cosine, some more work is needed.
Recall that
#sin^2x+cos^2x=1#
Then,
#cos^2x=1-sin^2x#
#cosx=sqrt(1-sin^2x)#
#cos(arcsin(1/3))=sqrt(1-sin^2(arcsin(1/3)))#
Knowing #sin(arcsin(1/3))=1/3, sin^2(arcsin(1/3))=(1/3)^2=1/9#
Then,
#cos(arcsin(1/3))=sqrt(1-1/9)=sqrt(8/9)=(2sqrt2)/3#
Thus,
#tan(arcsin(1/3))=(1/3)/((2sqrt2)/3)=1/cancel3*cancel3/(2sqrt2)=1/(2sqrt2)#