How do you evaluate tan(7π12)?

1 Answer
Mar 17, 2016

2+323

Explanation:

On the trig unit circle,
tan(7π12)=tan(π12+6π12)=tan(π12+π2)=cot(π12).
Find cot(π12)=cos(π12)sin(π12)
Apply the trig identity: cos2a=2cos2a1=12sin2a.
cos(π6)=32=2cos2(π12)1.
cos2(π12)=1+32=2+34
cos(π12)=2+32 --> (since (pi/12) is in Quadrant I)
By the same way:
sin(π12)=232
Finally:
tan(7π12)=cossin=2+323