How do you evaluate Tan((3pi)/4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer ali ergin Apr 25, 2016 tan((3pi)/4)=-1 Explanation: (3pi)/4=pi-pi/4 a=pi b=pi/4 tan(a-b)=(tan a-tan b)/(1+tan a*tan b) tan((3pi)/4)=(tan pi-tan (pi/4))/(1+tan pi*tan (pi/4) tan((3pi)/4)=(0-1)/(1+0*1) tan((3pi)/4)=-1/1 tan((3pi)/4)=-1 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 7038 views around the world You can reuse this answer Creative Commons License