How do you evaluate tan ((2pi)/3)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shell Dec 4, 2016 tan((2pi)/3)=-sqrt3 Explanation: tan((2pi)/3) Recall the identity tantheta=sintheta/costheta According to the unit circle, sin((2pi)/3)=sqrt3/2 and cos((2pi)/3)=-1/2 tan((2pi)/3) =frac{sin((2pi)/3)}{cos((2pi)/3)}=frac(sqrt3/2)(-1/2) =sqrt3/2 * -2/1=sqrt3/cancel2 * -cancel2/1=-sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 89047 views around the world You can reuse this answer Creative Commons License