tan(11pi/12)=tan(pi-pi/12)=-tan(pi/12)=-tantheta, say where, theta=pi/12, so that 2theta=pi/6.
Now recall the identity : tan2theta=(2tantheta)/(1-tan^2theta)
:. tan(pi/6)=(2t)/(1-t^2), where, t=tantheta=tan(pi/12)
:. 1/sqrt3=(2t)/(1-t^2) rArr1-t^2=2sqrt3*trArrt^2+2sqrt3*t=1rArrt^2+2sqrt3*t+(sqrt3)^2=1+(sqrt3)^2
:. (t+sqrt3)^2=2^2
:.t+sqrt3=+-2
:.t=+-2-sqrt3
t=-2-sqrt3 rArr tan(pi/12) is -ve, which is not possible, as pi/12 lies in the First Quadrant [all trigo. ratio +ve]
Hence, t=tan(pi/12)=+2-sqrt3, so, tan(11pi/12)=-tan(pi/12)=sqrt3-2~=1.7321-2=-0.2679