How do you evaluate sine, cosine, tangent of -pi/6 without using a calculator?

2 Answers
Nov 18, 2017

sin(-pi/6)=-1/2
cos(-pi/6)=sqrt2/2
tan(-pi/6)=-sqrt3/3

Explanation:

Recall that:
sin(-x)=-sin(x)
cos(-x)=cos(x)
tan(-x)=-tan(x)

and,
pi/6/(30^@) is a special angle.

enter image source here

Hence,
sin(-pi/6)=-sin(pi/6)
color(white)(xxxxx....)=-1/2

cos(-pi/6)=cos(pi/6)
color(white)(xxxxxx..)=sqrt2/2

tan(-pi/6)=-tan(pi/6)
color(white)(xxxxxx..)=-sqrt3/3

Nov 18, 2017

sin(-pi/6)=-1/2
cos(-pi/6)=sqrt(3)/2
tan(-pi/6)=-1/sqrt(3)=-sqrt(3)/3

Explanation:

Draw an equilateral triangle with unit lengths. Each angle is pi/3.

Now, bisect one of the angles. This gives two right triangles.

GeoGebraGeoGebra

Look at the right triangle to the right. The hypotenuse is 1. The angle marked is pi/6. The side opposite the angle is 1/2. The side adjacent the angle can be found using Pythagoras' Theorem sqrt(1^2-(1/2)^2)=sqrt(3)/2.

Then, sin(pi/6)=(1/2)/1=1/2 (opposite over hypotenuse); cos(pi/6)=(sqrt(3)/2)/1=sqrt(3)/2 (adjacent over hypotenuse); tan(pi/6)=(1/2)/(sqrt(3)/2)=1/sqrt(3), or sqrt(3)/3 (opposite over adjacent).

Recall the following identities (or use a unit circle):
sin(-x)=-sin(x) (since sin is an odd function)
cos(-x)=cos(x) (since cos is an even function)
tan(-x)=-tan(x) (since tan is an odd function)

Thus,
sin(-pi/6)=-1/2
cos(-pi/6)=sqrt(3)/2
tan(-pi/6)=-1/sqrt(3)=-sqrt(3)/3