How do you evaluate sine, cosine, tangent of (10pi)/3 without using a calculator? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Andrea S. Dec 28, 2016 sin((10pi)/3)= -sqrt(3)/2 cos((10pi)/3)= -1/2 tan((10pi)/3)= sqrt(3) Explanation: You consider that: (10pi)/3 = 2pi+pi+pi/3, so that: sin((10pi)/3)= sin(2pi+pi+pi/3) =sin(pi+pi/3) = sinpicos(pi/3)+cospisin(pi/3) = -sin(pi/3)= -sqrt(3)/2 cos((10pi)/3)= cos(2pi+pi+pi/3) =cos(pi+pi/3) = cospicos(pi/3)-sinpisin(pi/3) = -cos(pi/3)= -1/2 tan((10pi)/3)= sin((10pi)/3)/(cos((10pi)/3))=(-sqrt(3)/2)/(-1/2) = sqrt(3) Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 16996 views around the world You can reuse this answer Creative Commons License