How do you evaluate sin{pi/7} sin{(2pi)/7} sin{(3pi)/7}?

1 Answer
Nov 16, 2016

Let x=sin(pi/7)sin((2pi)/7)sin((3pi)/7)
and

y=cos(pi/7)cos((2pi)/7)cos((3pi)/7)

So

8xy=2sin(pi/7)cos(pi/7) xx2sin((2pi)/7)cos((2pi)/7)xx2sin((3pi)/7)cos((3pi)/7)

=sin((2pi)/7)sin((4pi)/7)sin((6pi)/7)

=sin((2pi)/7)sin(pi-(3pi)/7)sin(pi-pi/7)

=sin((2pi)/7)sin((3pi)/7)sin(pi/7)=x

Hence y=1/8

Now let

cos(pi/7)=a,cos((2pi)/7)=b,cos((3pi)/7)=c

So

y=cos(pi/7)cos((2pi)/7)cos((3pi)/7)=abc=1/8

Again

8x^2=8sin^2(pi/7)sin^2((2pi)/7)sin^2((3pi)/7)

=[1-cos((2pi)/7)][1-cos((4pi)/7)][1-cos((6pi)/7)]

=[1-cos((2pi)/7)][1+cos((3pi)/7)][1+cos(pi/7)]

=(1-b)(1+c)(1+a)

=(1-b)(1+c)(1+a)

=1+a-b+c+ac-ab-bc-abc

=1+a-b+c+ac-ab-bc-1/8

=>8x^2=7/8+a-b+c+ac-ab-bc

Now

ac-ab-bc=1/2(2ac-2ab-2bc)

=1/2[2cos(pi/7)cos((3pi)/7) -2cos(pi/7)cos((2pi)/7)-2cos((2pi)/7)cos((3pi)/7)]

=1/2[cos((4pi)/7)+cos((2pi)/7) -cos((3pi)/7)-cos(pi/7)-cos((5pi)/7)-cos(pi/7)]

=1/2[-cos((3pi)/7)+cos((2pi)/7) -cos((3pi)/7)+cos((2pi)/7)-2cos(pi/7)]

=1/2[2cos((2pi)/7) -2cos((3pi)/7)-2cos(pi/7)]

=b-a-c

=>ac-ab-bc+a-b+c=0

Hence we get

=>8x^2=7/8+a-b+c+ac-ab-bc

=>8x^2=7/8+0

=>x^2=7/64

=>x=sqrt7/8

=>sin(pi/7)sin((2pi)/7)sin((3pi)/7)=sqrt7/8