How do you evaluate sin (pi/4) sin (pi/6)?

1 Answer
May 3, 2016

sin(pi/4)xxsin(pi/6)=0.35355

Explanation:

sin(pi/4)xxsin(pi/6)

= 1/sqrt2xx1/2=1/(2sqrt2)=1/4xxsqrt2=1.4142/4=0.35355

Alternatively, sin(pi/4)xxsin(pi/6)

= 1/2{cos(pi/4-pi/6)-cos(pi/4+pi/6)

= 1/2{cos((3pi-2pi)/12)-cos((3pi+2pi)/12)}

= 1/2{cos(pi/12)-cos((5pi)/12)}

= 1/2{0.9659-0.2588}=1/2xx0.7071=0.35355