How do you evaluate sin (pi/4) sin (pi/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria May 3, 2016 sin(pi/4)xxsin(pi/6)=0.35355 Explanation: sin(pi/4)xxsin(pi/6) = 1/sqrt2xx1/2=1/(2sqrt2)=1/4xxsqrt2=1.4142/4=0.35355 Alternatively, sin(pi/4)xxsin(pi/6) = 1/2{cos(pi/4-pi/6)-cos(pi/4+pi/6) = 1/2{cos((3pi-2pi)/12)-cos((3pi+2pi)/12)} = 1/2{cos(pi/12)-cos((5pi)/12)} = 1/2{0.9659-0.2588}=1/2xx0.7071=0.35355 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 3292 views around the world You can reuse this answer Creative Commons License