How do you evaluate sin (pi / 12) * cos (3 pi / 4) - cos (pi / 12) * sin (3 pi / 4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer RedRobin9688 Jun 27, 2018 -sqrt3/2 Explanation: Recall sin(A-B)=sinAcosB-cosAsinB sin(pi/12)cos((3pi)/4)-cos(pi/12)sin((3pi)/4)=sin(pi/12-(3pi)/4) sin(pi/12-(9pi)/12) Recall sin(-x)=-sin(x) sin(-(2pi)/3)=-sin((2pi)/3) -sqrt3/2 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 4381 views around the world You can reuse this answer Creative Commons License