How do you evaluate sin(((−5pi)/12))?

1 Answer
Apr 5, 2016

- (sqrt(2 + sqrt3)/2)

Explanation:

Trig unit circle and property of complementary arcs -->
sin ((-5pi)/12) = sin (pi/12 - (6pi)/12)) = sin (pi/12 - pi/2) =
= - cos (pi/12)
Evaluate cos (pi/12) by applying the trig identity:
cos 2a = 2cos^2 a - 1.
cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1
2cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/2
cos^2 (pi/12) = (2 + sqrt3)/4
cos (pi/12) = (sqrt(2 + sqrt3))/2 --> since cos (pi/12) is positive.
Therefor,
sin ((-5pi)/12) = - cos (pi/12) = - (sqrt(2 + sqrt3)/2)