How do you evaluate sin((2pi)/7)/(1+cos((2pi)/7))? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Mar 27, 2016 sin((2pi)/7)/(1+cos((2pi)/7))=tan(pi/7) Explanation: We use sin2A=2sinAcosA and cos2A=2cos^2A-1 hence sin((2pi)/7)=2sin(pi/7)cos(pi/7) and cos((2pi)/7)=2cos^2(pi/7)-1 Hence, sin((2pi)/7)/(1+cos((2pi)/7))=(2sin(pi/7)cos(pi/7))/(1+2cos^2(pi/7)-1) or = (2sin(pi/7)cos(pi/7))/(2cos^2(pi/7)) or = sin(pi/7)/(cos(pi/7))=tan(pi/7) Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2826 views around the world You can reuse this answer Creative Commons License