How do you evaluate #sin ((23pi) / 3) #? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 22, 2016 #-sqrt3/2# Explanation: Trig table and trig unit circle --> #sin ((23pi)/3) = sin (-pi/3 + (24pi)/3) = sin (-pi/3 + 8pi) =# #= sin (-pi/3) = - sin (pi/3) = - sqrt3/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 8466 views around the world You can reuse this answer Creative Commons License