How do you evaluate Sin^2 (pi/6) - 2sin (pi/6) cos (pi/6) + cos^2 (-pi/6)?

2 Answers
Aug 24, 2016

1/2(2-sqrt3)

Explanation:

Let us note that, because, cos(-x)=cosx......(star), the given expression

=sin^2(pi/6)-2sin(pi/6)cos(pi/6)+cos^2(pi/6)

=(sin(pi/6)-cos(pi/6))^2

=(1/2-sqrt3/2)^2={(1-sqrt3)/2}^2

=1/4(1-2sqrt3+3)

=1/4(4-2sqrt3)

=1/2(2-sqrt3)

Alternatively, we can directly plug in the respective values, keeping

(star) in mind, to get,

The Reqd. Value=(1/2)^2-2(1/2)(sqrt3/2)+(sqrt3/2)^2

=1/4-sqrt3/2+3/4

=1-sqrt3/2=1/2(2-sqrt3), as before!

Enjoy Maths.!

Aug 24, 2016

1 - sqrt3/2

Explanation:

Since
sin^2 (pi/6) + cos^2 (- pi/6) = 1
2sin (pi/6).cos (pi/6) = sin (pi/3) (identity: sin 2a = 2sin a.cos a)
There for, the given expression is equal to:
S = 1 - sin (pi/3) = 1 - sqrt3/2