How do you evaluate Sin (165)?
1 Answer
Sep 29, 2016
Explanation:
Some things we will use:
sin(theta) = sin (180^@ - theta)
sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha
sin 45^@ = cos 45^@ = sqrt(2)/2
sin 30^@ = 1/2
cos 30^@ = sqrt(3)/2
Hence we find:
sin 165^@ = sin (180^@-165^@)
color(white)(sin 165^@) = sin 15^@
color(white)(sin 165^@) = sin (45^@ - 30^@)
color(white)(sin 165^@) = sin 45^@ cos 30^@ - sin 30^@ cos 45^@
color(white)(sin 165^@) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2
color(white)(sin 165^@) = 1/4(sqrt(6)-sqrt(2))
Footnotes
The trigonometric values we used in our derivation can be observed in the following right angled triangles:
Hence
Hence