How do you evaluate sec((9pi)/4)?

1 Answer
Sep 24, 2016

sec((9pi)/4)=sqrt2

Explanation:

All trigonometric ratios have a cycle of 2pi, i.e.

their values repeat after every 2pi and we can say for example

sinx=sin(2pi+x)=sin(4pi+x)=sin(6pi+x)=.... and

secx=sec(2pi+x)=sec(4pi+x)=sec(6pi+x)=....

Now sec((9pi)/4)=sec((8pi)/4+pi/4)=sec(2pi+pi/4)=sec(pi/4)

But sec(pi/4)=sqrt2, hence

sec((9pi)/4)=sqrt2