How do you evaluate #sec((2pi)/3)-tan((pi)/6)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 24, 2016 # -(2 + sqrt3/3)# Explanation: Trig table --> #sec ((2pi)/3) = 1/cos ((2pi)/3) = 1/(-1/2) = -2# #tan (pi/6) = sqrt3/3# Therefor, #sec ((2pi)/3) - tan (pi/6) = - 2 - sqrt3/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3607 views around the world You can reuse this answer Creative Commons License