How do you evaluate sec((11pi)/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Oct 25, 2016 (2sqrt3)/3 Explanation: sec ((11pi)/6) = 1/(cos ((11pi)/6) Trig table and unit circle --> cos ((11pi)/6) = cos (-pi/6 + (12pi)/6) = cos (-pi/6 + 2pi) = = cos (-pi/6) = cos (pi/6) = sqrt3/2 There for: sec ((11pi)/6) = 2/sqrt3 = (2sqrt3)/3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2813 views around the world You can reuse this answer Creative Commons License