How do you evaluate if possible the 6 trigonometric functions of the real number t= (7pi)/6t=7π6?

1 Answer
Apr 11, 2016

sin ((7pi)/.6))=-1/2, cos ((7pi)/6)= -sqrt3/2 and tan ((7pi)/6)=1/sqrt3sin(7π.6))=12,cos(7π6)=32andtan(7π6)=13.
The recprocals, csc ((7pi)/.6))=-2, sec ((7pi)/6)= -2/sqrt3 and cot ((7pi)/6)=sqrt3csc(7π.6))=2,sec(7π6)=23andcot(7π6)=3...

Explanation:

In the third quadrant, both sine and cosine are negative and the tangent is positive.

7pi/67π6 direction is in the third quadrant.

For any of the six functions f(theta)f(θ), f(pi+theta)=+-f(theta) and 7pi/6=pi+pi/6f(π+θ)=±f(θ)and7π6=π+π6.

So, in every case it is +-f(pi/6)±f(π6).
Choose appropriate sign and prefix to f(pi/6)f(π6). ..