Apply Euler's Identity
#e^(itheta)=costheta+isintheta#
#e^(ipi/4)=cos(pi/4)+isin(pi/4)#
#=sqrt2/2+isqrt2/2#
#e^(i11/8pi)=cos(11/8pi)+isin(11/8pi)#
#cos(2theta)=2cos^2theta-1#
#costheta=sqrt((1+cos2theta)/2)#
#cos(11/8pi)=sqrt((1+cos(11/4pi)/2)#
#=sqrt((1-sqrt2/2)/2)#
#=sqrt(2-sqrt2)/2#
#cos(2theta)=1-2sin^2theta#
#sintheta=sqrt((1-cos(2theta))/2)#
#sin(11/8pi)=sqrt((1-cos(11/4pi))/2)#
#=sqrt((1+sqrt2/2)/2)#
#=sqrt(2+sqrt2)/2#
Finally,
#e^(ipi/4)-e^(i11/8pi)#
#=sqrt2/2+isqrt2/2-sqrt(2-sqrt2)/2-isqrt(2+sqrt2)/2#
#=sqrt2/2-sqrt(2-sqrt2)/2+i(sqrt2/2-sqrt(2+sqrt2)/2)#