How do you evaluate # e^( ( pi)/2 i) - e^( ( 19 pi)/12 i)# using trigonometric functions?
1 Answer
I get this.
Interestingly enough, you can use Euler's formula, which states:
#\mathbf(e^(ix) = isinx+cosx)#
Thus, you can substitute
#e^(i*pi"/"2) - e^(i*19pi"/"12)#
#= [isin(pi/2) + cos(pi/2)] - [isin((19pi)/12) + cos((19pi)/12)]#
We know that
#= color(green)([isin(90^@) + cos(90^@)] - [isin(285^@) + cos(285^@)])#
Okay, so what is
#sin(285^@) = sin(-75^@) = -sin(75^@) = -sin(30^@+45^@)#
Using the addition identity
#=> -[sin30^@cos45^@ + cos30^@sin45^@]#
#= -(1/2*sqrt2/2 + sqrt3/2*sqrt2/2)#
#= (-sqrt2-sqrt6)/4 ~~ -0.9659#
Then, consider
#cos(285^@) = cos(-285^@) = cos(75^@) = cos(30^@+45^@)#
Using the addition identity
#=> cos30^@cos45^@ - sin30^@sin45^@#
#= sqrt3/2*sqrt2/2 - 1/2*sqrt2/2#
#= (sqrt6 - sqrt2)/4 ~~ 0.2588#
So overall, we have:
#color(blue)(e^(i*pi"/"2) - e^(i*19pi"/"12))#
#= [icancel(sin(90^@)) + cancel(cos(90^@))^0] - [isin(285^@) + cos(285^@)]#
#= i - i[(-sqrt2-sqrt6)/4] - [(sqrt6 - sqrt2)/4]#
#= -(sqrt6 - sqrt2)/4 + (1 - (-sqrt2-sqrt6)/4)i#
#= color(blue)(-(sqrt6 - sqrt2)/4 + (1 + (sqrt2+sqrt6)/4)i)#
#~~ color(blue)(-0.2588 + 1.9659i)#