We apply Euler's relation
#e^(itheta)=costheta+isintheta#
#e^(1/12pii)=cos(1/12pi)+isin(1/12pi)#
#e^(3/8pii)=cos(3/8pi)+isin(3/8pi)#
#cos(1/12pi)=cos(1/3pi-1/4pi)#
#=cos(1/3pi)cos(1/4pi)+sin(1/3pi)sin(1/4pi)#
#=1/2*sqrt2/2+sqrt3/2*sqrt2/2#
#=(sqrt2+sqrt6)/4#
#sin(1/12pi)=sin(1/3pi-1/4pi)#
#=sin(1/3pi)cos(1/4pi)-sin(1/4pi)cos(1/3pi)#
#=sqrt3/2*sqrt2/2-sqrt2/2*1/2#
#=(sqrt6-sqrt2)/4#
#cos(3/4pi)=1-2sin^2(3/8pi)#
#2sin^2(3/8pi)=1-cos(3/4pi)=1+sqrt2/2#
#sin(3/8pi)=sqrt(1/2(1+sqrt2/2))=1/2sqrt(2+sqrt2)#
#cos(3/4pi)=2cos^2(3/8pi)-1#
#2cos^2(3/8pi)=1+cos(3/4pi)=1-sqrt2/2#
#cos(3/8pi)=1/2sqrt(2-sqrt2)#
Therefore,
#e^(1/12pii)-e^(3/8pii)=cos(1/12pi)+isin(1/12pi)-cos(3/8pi)-isin(3/8pi)#
#=((sqrt2+sqrt6)/4)-1/2sqrt(2-sqrt2)+i(((sqrt6-sqrt2)/4)-1/2sqrt(2+sqrt2))#