How do you evaluate e^( ( 7 pi)/4 i) - e^( ( pi)/6 i) using trigonometric functions?

1 Answer
Jan 31, 2016

e^{i (7pi)/4} - e^{i pi/6} = (sqrt2-sqrt3)/2 - i ((1+sqrt2)/2)

Explanation:

Use the Euler's Formula, which states that e^{i theta} -= cos(theta) + i sin(theta). (Proof omitted)

Therefore,

e^{i (7pi)/4} - e^{i pi/6} = (cos((7pi)/4) + i sin((7pi)/4)) - (cos(pi/6) + i sin(pi/6))

= (sqrt2/2 + i (-sqrt2/2)) - (sqrt3/2 + i (1/2))

= (sqrt2-sqrt3)/2 - i ((1+sqrt2)/2)