How do you evaluate e^( ( 5 pi)/4 i) - e^( ( 19 pi)/12 i)e5π4ie19π12i using trigonometric functions?

1 Answer
Jun 3, 2016

=1/(2sqrt2)((sqrt3+1)-i(sqrt3-1))=122((3+1)i(31))

Explanation:

e^( ( 5 pi)/4 i) - e^( ( 19 pi)/12i)e5π4ie19π12i

=[cos((5pi)/4)+isin((5pi)/4)] -[cos((19pi)/12)+isin((19pi)/12)]=[cos(5π4)+isin(5π4)][cos(19π12)+isin(19π12)]

=[cos((5pi)/4)-cos((19pi)/12)]-i[sin((19pi)/12)-sin((5pi)/4)]=[cos(5π4)cos(19π12)]i[sin(19π12)sin(5π4)]

=[cos((15pi)/12)-cos((19pi)/12)]-i[sin((19pi)/12)-sin((15pi)/12)]=[cos(15π12)cos(19π12)]i[sin(19π12)sin(15π12)]

=[2sin((17pi)/12)sin((2pi)/12)]-i[2cos((17pi)/12)sin((2pi)/12)]=[2sin(17π12)sin(2π12)]i[2cos(17π12)sin(2π12)]

=[2sin((17pi)/12)xx1/2]-i[2cos((17pi)/12)xx1/2]=[2sin(17π12)×12]i[2cos(17π12)×12]

=sin((17pi)/12)-icos((17pi)/12)=sin(17π12)icos(17π12)

Now

  • sin((17pi)/12)=sqrt(1/2(1-cos((17pi)/6)))=sqrt(1/2(1-cos(3pi-pi/6))sin(17π12)=12(1cos(17π6))=12(1cos(3ππ6))
    =sqrt(1/2(1+cos(pi/6)))=sqrt(1/2(1+cos(pi/6)))=12(1+cos(π6))=12(1+cos(π6))

=sqrt((2+sqrt3)/4)=sqrt((4+2sqrt3)/8)=(sqrt3+1)/(2sqrt2)=2+34=4+238=3+122

and

  • cos((17pi)/12)=sqrt(1/2(1+cos((17pi)/6)))=sqrt(1/2(1+cos(3pi-pi/6))cos(17π12)=12(1+cos(17π6))=12(1+cos(3ππ6))

=sqrt(1/2(1-cos(pi/6)))=sqrt(1/2(1-cos(pi/6)))

=sqrt((2-sqrt3)/4)=sqrt((4-2sqrt3)/8)=(sqrt3-1)/(2sqrt2)

Hence

e^( ( 5 pi)/4 i) - e^( ( 19 pi)/12i)

=sin((17pi)/12)-icos((17pi)/12)

=1/(2sqrt2)((sqrt3+1)-i(sqrt3-1))