#e^( ( 5 pi)/4 i) - e^( ( 19 pi)/12i)#
#=[cos((5pi)/4)+isin((5pi)/4)] -[cos((19pi)/12)+isin((19pi)/12)]#
#=[cos((5pi)/4)-cos((19pi)/12)]-i[sin((19pi)/12)-sin((5pi)/4)]#
#=[cos((15pi)/12)-cos((19pi)/12)]-i[sin((19pi)/12)-sin((15pi)/12)]#
#=[2sin((17pi)/12)sin((2pi)/12)]-i[2cos((17pi)/12)sin((2pi)/12)]#
#=[2sin((17pi)/12)xx1/2]-i[2cos((17pi)/12)xx1/2]#
#=sin((17pi)/12)-icos((17pi)/12)#
Now
- #sin((17pi)/12)=sqrt(1/2(1-cos((17pi)/6)))=sqrt(1/2(1-cos(3pi-pi/6))#
#=sqrt(1/2(1+cos(pi/6)))=sqrt(1/2(1+cos(pi/6)))#
#=sqrt((2+sqrt3)/4)=sqrt((4+2sqrt3)/8)=(sqrt3+1)/(2sqrt2)#
and
- #cos((17pi)/12)=sqrt(1/2(1+cos((17pi)/6)))=sqrt(1/2(1+cos(3pi-pi/6))#
#=sqrt(1/2(1-cos(pi/6)))=sqrt(1/2(1-cos(pi/6)))#
#=sqrt((2-sqrt3)/4)=sqrt((4-2sqrt3)/8)=(sqrt3-1)/(2sqrt2)#
Hence
#e^( ( 5 pi)/4 i) - e^( ( 19 pi)/12i)#
#=sin((17pi)/12)-icos((17pi)/12)#
#=1/(2sqrt2)((sqrt3+1)-i(sqrt3-1))#