How do you evaluate e^( ( 3 pi)/8 i) - e^( ( 7 pi)/4 i) using trigonometric functions?

1 Answer
May 30, 2018

e^((3 pi)/8 i)-e^((7 pi)/4 i) ~~ -0.324 + 0.217 i

Explanation:

e^((3 pi)/8 i) - e^((7 pi)/4 i) = ?

We know e^(itheta) = cos theta +i sin theta

(3 pi)/8 =(3*180)/8= 67.5^0 , (7 pi)/4= (7*180)/4 = 315.0^0

cos 67.5 ~~0.383 ; sin 67.5 = 0.924 ; cos 315 ~~ 0.707 ;

sin 315.0 ~~ -0.707

e^((3 pi)/8 i)= cos 67.5 + sin 67.5*i=0.383 + 0.924 i

e^((7 pi)/4 i) = cos 315 + sin 315*i=0.707 - 0.707 i

e^((3 pi)/8 i)-e^((7 pi)/4 i)~~(0.383 + 0.924 i)-(0.707 - 0.707 i)

or e^((3 pi)/8 i)-e^((7 pi)/4 i) ~~ -0.324 + 0.217 i [Ans[