How do you evaluate e^( ( 11 pi)/6 i) - e^( ( 9 pi)/8 i)e11π6ie9π8i using trigonometric functions?

1 Answer
Apr 9, 2016

(sqrt3/2+sqrt((sqrt2+1)/(2sqrt2)))-i(1/2-sqrt((sqrt2-1)/(2sqrt2)))(32+2+122)i(122122)

Explanation:

e^(ix)=cos x + i sinxeix=cosx+isinx.
cos(2pi-x)=cos x, sin (2pi-x)=-sin x, cos(pi+x)=-cos x and sin(pi+x)=-sin xcos(2πx)=cosx,sin(2πx)=sinx,cos(π+x)=cosxandsin(π+x)=sinx.

So, e^(11pi/6i)=cos (11pi/6)+i sin(11pi/6)=cos(2pi-pi/6)+i sin(2pi-pi/6)=cos (pi/6)-i sin (pi/6)=sqrt3/2-i(1/2)e11π6i=cos(11π6)+isin(11π6)=cos(2ππ6)+isin(2ππ6)=cos(π6)isin(π6)=32i(12).
e^(9pi/8)=cos (9pi/8)+i sin(9pi/8)=cos(pi+pi/8)+i sin(pi+pi/8)=-cos (pi/8)-i sin( pi/8)e9π8=cos(9π8)+isin(9π8)=cos(π+π8)+isin(π+π8)=cos(π8)isin(π8).
cos A = sqrt((1+cos 2A)/2), sin A=sqrt((1-cos 2A)/2)cosA=1+cos2A2,sinA=1cos2A2

So, cos(pi/8)=sqrt((1+cos (pi/4))/2) = sqrt((sqrt2+1)/(2sqrt2))cos(π8)=1+cos(π4)2=2+122.
sin(pi/8)=sqrt((1-cos (pi/4))/2) = sqrt((sqrt2-1)/(2sqrt2))sin(π8)=1cos(π4)2=2122.

Npw, e^(9pi/8)=sqrt((sqrt2+1)/(2sqrt2))-i sqrt((sqrt2-1)/(2sqrt2))e9π8=2+122i2122.

So, the given expression =(sqrt3/2+sqrt((sqrt2+1)/(2sqrt2)))-i(1/2-sqrt((sqrt2-1)/(2sqrt2)))(32+2+122)i(122122)