To find csc75csc75, we first find sin75 :-sin75:−
sin75=sin(45+30)=sin45cos30+cos45sin30sin75=sin(45+30)=sin45cos30+cos45sin30
=1/sqrt2*sqrt3/2+1/sqrt2*1/2=1√2⋅√32+1√2⋅12
=(sqrt3+1)/(2sqrt2)=√3+12√2
=(sqrt6+sqrt2)/4=√6+√24.
Hence, csc75=1/sin75csc75=1sin75
=4/(sqrt6+sqrt2)=4√6+√2
{4(sqrt6-sqrt2)}/{(sqrt6+sqrt2)(sqrt6-sqrt2)}4(√6−√2)(√6+√2)(√6−√2)
=(sqrt6-sqrt2)=(√6−√2).
Taking, sqrt6~=2.4495, and, sqrt2~=1.4142√6≅2.4495,and,√2≅1.4142, we get,
csc75~=2.4495-1.4142~=1.0353csc75≅2.4495−1.4142≅1.0353.