How do you evaluate cot ((7pi)/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Jul 9, 2016 It is cot((pi+6pi)/6)=cot(pi+pi/6)=cot(pi/6)=sqrt3 Another way is that cot(pi+pi/6)=1/(tan(pi+pi/6)) Use the tan(a + b) = [tan a + tan b]/[1 - (tan a)(tan b)] so you get: tan(pi + pi/6) = [tanpi + tanpi/6]/[1 - (tanpi)(tanpi/6)] = [ 0 + (sqrt3)/3] / [1 - (0)((sqrt3)/3)] = [(sqrt3)/3] / [1 - 0] = [(sqrt3)/3] / 1 = [sqrt3] / 3 Hence cot(pi+pi/6)=1/(sqrt3/3)=sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 21667 views around the world You can reuse this answer Creative Commons License