How do you evaluate Cot (π/3) - cos(π/6)?

1 Answer
Jun 14, 2016

It is -1/(2sqrt(3)).

Explanation:

The definition of cot(x) is

cot(x)=cos(x)/sin(x). So we have

cot(pi/3)-cos(pi/6)

=cos(pi/3)/sin(pi/3)-cos(pi/6)

Here we can substitute the values

cos(pi/3)=1/2

sin(pi/3)=sqrt(3)/2

cos(pi/6)=sqrt(3)/2

then we have

cos(pi/3)/sin(pi/3)-cos(pi/6)

=(1/2)/(sqrt(3)/2)-sqrt(3)/2

=1/2*2/sqrt(3)-sqrt(3)/2

=1/sqrt(3)-sqrt(3)/2

=(2-3)/(2sqrt(3))

=-1/(2sqrt(3)).