How do you evaluate cot 195? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Jun 29, 2016 cot195^o=2+sqrt3 Explanation: cot195^o=cot(180^o +15^o) = cot15^o Now cot(x/2)=cos(x/2)/sin(x/2) = (2cos(x/2)xxcos(x/2))/(2cos(x/2)sin(x/2))=(2cos^2(x/2))/sinx = (1+cosx)/sinx=cscx+cotx Hence, cot15^o=csc30^o +cot30^o=2+sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 6284 views around the world You can reuse this answer Creative Commons License