How do you evaluate cot((11pi)/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shell Sep 25, 2016 cot(11pi)/6 = -sqrt3 Explanation: cot((11pi)/6) Recall the identity cottheta=costheta/sintheta Using the unit circle, cos((11pi)/6)=sqrt3/2 and sin((11pi)/6)=-1/2 cot((11pi)/6)=frac{sqrt3/2}{-1/2}=sqrt3/2 * -2/1=-sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 4176 views around the world You can reuse this answer Creative Commons License