How do you evaluate cos (pi/2) cos(pi/7) + sin(pi/2) sin(pi/7)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Oct 16, 2016 Inserting cos(pi/2)=0 and sin(pi/2)=1 in the given expression we get cos(pi/2)cos(pi/7)+sin(pi/2)sin(pi/7) =0xxcos(pi/7)+1xxsin(pi/7) =sin(pi/7)=0.434 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2928 views around the world You can reuse this answer Creative Commons License