Use the trig identity: cos 2a = 2cos^2 a - 1 cos 2a = cos ((14pi)/12) = cos ((7pi)/6) = cos (pi/6 + pi) = -cos (pi/6) = - sqrt3/2 cos ((7pi)/6) = -sqrt3/2 = 2cos^2 ((7pi)/12) - 1 2cos^2 ((7pi)/12) = 1 - sqrt3/2 = (2 - sqrt3)/2 cos^2 ((7pi)/12) = (2 - sqrt3)/4 cos ((7pi)/12) = +- sqrt(2 - sqrt3)/2
Since (7pi)/12 is in Quadrant II, its cos is negative --> cos ((7pi)/12) = - sqrt(2 - sqrt3)/2